Letter to the Editor

Veronica Musetti, Silvia Masotti, Concetta Prontera, Rudina Ndreu, Giancarlo Zucchelli, Claudio Passino, Michele Emdin and Aldo Clerico*

Evaluation of reference change values for a hs-cTnI immunoassay using both plasma samples of healthy subjects and patients and quality control samples

https://doi.org/10.1515/cclm-2019-0032
Received January 10, 2019; accepted February 15, 2019

Keywords: acute coronary syndrome; cardiac troponins; high-sensitivity methods; quality specification; reference population; reference range value; risk stratification.

To the Editor,

In 2016, the guidelines of European Society of Cardiology (ESC) on the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation (NSTEMI) suggested 0 h/1 h rule-in and rule-out algorithms when measurement of cardiac troponins is performed using high-sensitivity immunoassay methods [1]. These guidelines recommend the use of absolute change (i.e. expressed as difference in cardiac troponins (cTn) concentrations, ng/L) rather than percentage variation for the assessment of the rise and/or fall of cTn values [1]. In particular, these guidelines suggest that very small absolute differences in cTn concentrations (such as 2, 5 and 6 ng/L) may be used for the rule-in or rule-out of NSTEMI with Architect hs-cTn method [1]. Although the guidelines state that the 0 h/1 h algorithms have been previously validated [1], to the best of our knowledge, there are no data available in the literature on the reference changing values (RCV) concerning the Architect hs-cTn method. Therefore, the aim of this study was to evaluate the RCV for the hs-cTn Architect method, especially for the range of cTn concentrations below the 99th percentile of the reference population (URL).

The analytical characteristics and performance of the hs-cTn method using the i1000SR platform (ARCHITECT STAT High Sensitive Troponin-I, Abbott Diagnostics Division, Ireland) were previously evaluated and compared with those of other hs-cTn immunoassay methods in our laboratory using standardized protocols [2–4]. The limit of blank (LoB) and limit of detection (LoD) for the Architect hs-method were 0.7 ng/L and 1.3 ng/L, respectively [2–4]. The reference values (i.e. the 99th percentile upper limit values, URL), suggested by the manufacturer, for men, women and total population are 15.6 ng/L (90% CI: 13.8–17.5 ng/L), 34.2 ng/L (28.9–39.2 ng/L) and 26.2 ng/L (23.3–29.7 ng/L), respectively.

The imprecision profile of the hs-cTnI Architect method is reported in Figure 1. Seven plasma samples of healthy subjects and patients with cardiac diseases with mean cTnI concentrations from 1.3 ng/L to 100.9 ng/L were used for the calculation of the imprecision profile [2–4]; these plasma pools were measured in 39 different runs with three different lots of reagent materials and calibrators throughout 2 months. Five control samples were also used for the calculation of the imprecision profile. According to Fraser [5], the bidirectional Z-score RCV between two results (95% CI) can be calculated by considering both the analytical variability of the method (CVa) and the intra-individual variability (CVi), using the Equation 1:
The contribution of biological/physiological variance is the major contribution (i.e. CVI approximately 9%) to the total variance in an individual with elevated cTnI (CVI approximately 5%–6%). However, at the present time, there are no hs-cTnI data supporting a proportional increase of the physiological (CVI) contribution to variance in different pathological situations. Therefore, specific clinical studies are needed to evaluate this important issue.

Our results are well in agreement with the absolute delta change values recommended by the 2016 ESC guidelines for the Architect cTnI method concerning the 0 h/1 h rule-out algorithm for the diagnosis of non-ST segment elevation MI [1]. Indeed, the ESC guidelines suggest for the rule-out of ACS-STEMI a hs-cTnI value measured at 0 h (admission to Emergence Department, ED) lower than 2 ng/L, or a 0 h value lower than 5 ng/L with a difference (Δ) 0 h/1 h less than 2 ng/L [1]. According to the data reported in Table 1, a cTnI value of 2 ng/L is not significantly (99%CI) different to the LoB (0.7 ng/L) and LoD (1.3 ng/L) of the Architect hs-cTnI method [2, 3]. For the rule-in of ACS-STEMI, ESC guidelines suggest a Δ change between cTnI values at admission and after 1 h of 6 ng/L [1], which is a cTnI value significantly higher than the LoD (Table 1).

It is important to note that our results may also be useful for the evaluation of cardiovascular risk in...
the general population. Several studies demonstrated that the cardiovascular risk in the general population increases continuously and progressively from very low cTnI values, measured with high sensitivity methods. As an example, in the North-Trøndelag Health (HUNT) study [8] hs-TnI was measured with the Architect method in a cohort of 9005 participants free from known cardiovascular disease at baseline. During a median follow-up period of 13.9 years, 733 participants reached the composite end point of hospitalization for MI, heart failure, or cardiovascular death. Adding hs-TnI to established cardiovascular risk prediction models led to a net reclassification improvement higher than that obtained by including only the classic cardiovascular risk factors [8]. It is important to note that the range values for tertiles with the intermediate risk were 4–10 ng/L for women and 6–12 ng/L for men [8], respectively. These cTnI values are slightly higher than the upper 99th percentile URL values, divided for sex, as suggested by the manufacturer (i.e. 15.6 ng/L for women and 34.2 ng/L for men) [8]. According to these data, the observation of an increment in hs-cTnI levels, even of only 3–5 ng/L over some months in a patient with a suspect of cardiopathy should suggest an ongoing myocardial remodeling, potentially leading to the development of symptomatic heart failure [9,10].

The Fourth Universal Definition of Myocardial Infarction [11] has recently stressed the fundamental role of cTnI and cTnT assay in the detection of myocardial injury and consequently in the diagnosis of MI. High-sensitivity cTn are able to promptly identify patients with asymptomatic myocardial injury, who are at highest risk of heart failure development. The early detection of patients at high risk should improve an early diagnosis, thereby also possibly warranting a better prognosis.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References


